Identification and characterization of proteolytically resistant gluten-derived peptides.
نویسندگان
چکیده
The lack of digestibility of certain gluten proteins is essential in the development of celiac disease (CD). Gluten proteins are remarkably resistant to luminal and brush-border proteolysis owing to their high proline and glutamine content. Consequently, large fragments remain intact after digestion exerting toxic effects. Intestinal brush-border membrane vesicles (BBMV) have been described as having strong proteolytic activity mainly through prolyl endopeptidase enzymes. The purpose of this work was to monitor the gastrointestinal digestion of specific CD epitopes by means of an in vitro gastrointestinal digestion model that included incubation with brush-border membrane enzymes. Gluten hydrolysates were characterized by mass spectrometry and the immunologic peptides were tracked by searching the main T-cell stimulating epitopes which have been widely described. The immunologic potential of gluten hydrolysates was further analysed by enzyme-linked immunosorbent assay (ELISA). The results showed that the composition of gluten hydrolysates depended on the digestion time and protein structural characteristics. On the other hand, the main T-cell stimulating epitopes formed during hydrolysis depend on the precursor protein. Glutenin oligopeptides were degraded faster whereas gliadin, mainly α-gliadin oligopeptides, remained intact for a long time. MS-based analysis showed that the formation of the epitopes from γ-gliadin and ω-gliadin or glutenin was favoured but they were generally degraded during the gastrointestinal treatment. However, the peptides containing the epitope PFPQPQLPY (α-gliadin) remained intact even after 180 min of digestion time. Overall, from all the epitopes tracked, PFPQPQLPY was the most resistant to in vitro BBMV digestion.
منابع مشابه
Interferon-gamma released by gluten-stimulated celiac disease-specific intestinal T cells enhances the transepithelial flux of gluten peptides.
Celiac sprue is a T-cell-mediated enteropathy elicited in genetically susceptible individuals by dietary gluten proteins. To initiate and propagate inflammation, proteolytically resistant gluten peptides must be translocated across the small intestinal epithelium and presented to DQ2-restricted T cells, but the effectors enabling this translocation under normal and inflammatory conditions are n...
متن کاملCombination enzyme therapy for gastric digestion of dietary gluten in patients with celiac sprue.
BACKGROUND AND AIMS Celiac sprue is a multifactorial disease characterized by an inflammatory response to ingested gluten in the small intestine. Proteolytically resistant, proline- and glutamine-rich gluten peptides from wheat, rye, and barley persist in the intestinal lumen and elicit an immune response in genetically susceptible persons. We investigated a new combination enzyme product, cons...
متن کاملStructural basis for HLA-DQ2-mediated presentation of gluten epitopes in celiac disease.
Celiac disease, also known as celiac sprue, is a gluten-induced autoimmune-like disorder of the small intestine, which is strongly associated with HLA-DQ2. The structure of DQ2 complexed with an immunogenic epitope from gluten, QLQPFPQPELPY, has been determined to 2.2-A resolution by x-ray crystallography. The glutamate at P6, which is formed by tissue transglutaminase-catalyzed deamidation, is...
متن کاملEffect of barley endoprotease EP-B2 on gluten digestion in the intact rat.
Celiac Sprue is a multifactorial disease characterized by an intestinal inflammatory response to ingested gluten. Proteolytically resistant gluten peptides from wheat, rye, and barley persist in the intestinal lumen and elicit an immune response in genetically susceptible individuals. Here, we demonstrate the in vivo ability of a gluten-digesting protease ("glutenase") to accelerate the breakdo...
متن کاملComparative biochemical analysis of three bacterial prolyl endopeptidases: implications for coeliac sprue.
Prolyl endopeptidases have potential for treating coeliac sprue, a disease of the intestine caused by proteolytically resistant peptides from proline-rich prolamins of wheat, barley and rye. We compared the properties of three similar bacterial prolyl endopeptidases, including the known enzymes from Flavobacterium meningosepticum (FM) and Sphingomonas capsulate (SC) and a novel enzyme from Myxo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Food & function
دوره 9 3 شماره
صفحات -
تاریخ انتشار 2018